Fine Structural Morphology of Identified X- and Y-Cells in the Cat's Lateral Geniculate Nucleus

Four physiologically identified neurons in the A laminae of the cat’s dorsal lateral geniculate nucleus were filled with horseradish peroxidase and studied using the electron microscope. Two were X-cells and two were Y-cells. Each had electrophysiological properties appropriate for its X- or Y-cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1984-06, Vol.221 (1225), p.411-436
Hauptverfasser: Wilson, J. R., Bose, N., Sherman, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four physiologically identified neurons in the A laminae of the cat’s dorsal lateral geniculate nucleus were filled with horseradish peroxidase and studied using the electron microscope. Two were X-cells and two were Y-cells. Each had electrophysiological properties appropriate for its X- or Y-cell class, and each also had an axon that projected into the optic radiation, indicative of a geniculocortical relay cell. Representative samples from about 10% of each neuron’s entire dendritic arbor (proximal and distal) were taken to obtain an estimate of the types and distributions of synapses contacting these arbors. One X-cell had a cytoplasmic laminar body, but there were no other significant cytological differences seen among the neurons. Common to each of the neurons were the following synaptic features: (i) retinal terminals (r. l. p.) were mostly or entirely restricted to proximal dendrites or dendritic appendages (< 100 μm from the soma). These terminals constituted about 15-25% of the synapses on the proximal dendrites, (ii) Terminals with flattened or pleomorphic synaptic vesicles (f. terminals) were predominant on the proximal dendrites (30-55% of the total synapses for that region) and were mainly located near the retinal terminals. A smaller percentage (10-20%) were also distributed onto the distal dendrites, (iii) Small terminals with round synaptic vesicles (r. s. d.), many presumably having a cortical origin, predominated (60-80%) on distal dendrites (> 100 μm), but also formed a large proportion (40-70%) of the synapses on the intermediate (50-150 μm) dendrites. Total synaptic contacts for one X-cell and one Y-cell were estimated at about 4000 and 5000, respectively. The major fine structural differences observed between X- and Y-cells were almost entirely related to the retinal afferents. First, the retinal synapses for X-cells were mostly made on to dendritic appendages (spines, etc.), whereas Y-cells had most of their retinal synapses onto the shafts of primary and proximal secondary dendrites (that is, near branch points). Second, the retinal terminals that contacted X-cell dendrites nearly always formed triadic arrangements that included nearby f. terminals, but those on Y-cells rarely did so. Finally, the main type of f. terminals associated with X-cells were morphologically different from most of those associated with the Y-cells, and this also related directly to the triadic arrangements; that is, f. terminals in the triadic arrangements
ISSN:0962-8452
0080-4649
0950-1193
1471-2954
2053-9193
DOI:10.1098/rspb.1984.0042