Aberrations of Cyclic Nucleotide Metabolism in the Hearts and Vessels of Hypertensive Rats

In the aortas and mesenteric arteries from spontaneous hypertensive rats and in the aortas from stress- and desoxycorticosterone-acetate-hypertensive rats, the intracellular cGMP: cAMP ratios were significantly elevated when compared to the ratios in the aortas of the respective controls. Decreases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1974-12, Vol.71 (12), p.4930-4934
Hauptverfasser: Amer, M. Samir, Gomoll, Allen W., Perhach, James L., Ferguson, Hugh C., McKinney, Gordon R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the aortas and mesenteric arteries from spontaneous hypertensive rats and in the aortas from stress- and desoxycorticosterone-acetate-hypertensive rats, the intracellular cGMP: cAMP ratios were significantly elevated when compared to the ratios in the aortas of the respective controls. Decreases in the intracellular cAMP or cGMP levels were consistently associated with increased activity of the cyclic-nucleotide-specific low Kmphosphodiesterase (3′:5′-cAMP 5′nucleotidohydrolase, EC 3.1.4.17). Increases in intracellular cGMP levels were associated with elevated guanylyl cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] activity. Furthermore, adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity was less sensitive to stimulation by the β -adrenergic stimulant isoproterenol in both the aortas and the hearts of the hypertensive animals. These changes could provide the biochemical basis for the (a) increased vascular smooth muscle tone and peripheral resistance observed in these animals, (b) increased reactivity to norepinephrine, and (c) decreased ability of aortas from hypertensive rats to relax. The presence of these same effects in different etiologic types of hypertension indicates that this aberration in cyclic nucleotide metabolism may represent a common metabolic defect basic to the hypertensive syndrome irrespective of etiology.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.71.12.4930