Atomic-level Ru-Ir mixing in rutile-type (RuIr)O 2 for efficient and durable oxygen evolution catalysis
The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, there...
Gespeichert in:
Veröffentlicht in: | Nature communications 2025-01, Vol.16 (1), p.579 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO
has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO
matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O
/C electrocatalysts demonstrate notable current density of 4.96 A cm
and mass activity of 19.84 A mg
at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites. |
---|---|
ISSN: | 2041-1723 |
DOI: | 10.1038/s41467-025-55910-1 |