Atomic-level Ru-Ir mixing in rutile-type (RuIr)O 2 for efficient and durable oxygen evolution catalysis

The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2025-01, Vol.16 (1), p.579
Hauptverfasser: Park, Yeji, Jang, Ho Yeon, Lee, Tae Kyung, Kim, Taekyung, Kim, Doyeop, Kim, Dongjin, Baik, Hionsuck, Choi, Jinwon, Kwon, Taehyun, Yoo, Sung Jong, Back, Seoin, Lee, Kwangyeol
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O /C electrocatalysts demonstrate notable current density of 4.96 A cm and mass activity of 19.84 A mg at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites.
ISSN:2041-1723
DOI:10.1038/s41467-025-55910-1