Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2024-12
1. Verfasser: Kleene, Steven J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
ISSN:1432-2013