Distinct biological control agents differentially modulate the immune system of the sugarcane borer larvae (Diatraea saccharalis)

The humoral response plays a crucial role in insect defense against parasites and pathogens, typically producing antimicrobial peptides through the Toll, IMD, and Jak-STAT signaling pathways, as well as melanization via phenoloxidases. However, many studies use nonpathogenic or opportunistic organis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of invertebrate pathology 2024-12, p.108241
Hauptverfasser: Abreu Reis, Manoely, Marinho Coutinho de Souza, Felipe, da Silva Nobre, Ianne Caroline, Gomes de Fraga Dias, Fátima Maryelen, Grossi-de-Sá, Maria Fátima, Antonino, José Dijair
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The humoral response plays a crucial role in insect defense against parasites and pathogens, typically producing antimicrobial peptides through the Toll, IMD, and Jak-STAT signaling pathways, as well as melanization via phenoloxidases. However, many studies use nonpathogenic or opportunistic organisms and often infect insects in nonnatural ways, such as piercing or injecting the pathogen into the hemocoel. The objective of this study was to examine the modulation of the main humoral pathway genes involved in the interaction between the nonmodel organism Diatraea saccharalis (the sugarcane borer) and different biological control agents. We identified and evaluated the expression of DsDorsal (Toll pathway), DsRelish (IMD pathway), DsSTAT (JAK/STAT pathway), DsPPO1, and DsPPO2 (PO pathway) in larvae and pupae of D. saccharalis exposed or not to different biological control agents. The biocontrol agents used were: (i) the bacterium Bacillus thuringiensis var. aizawai GC-91, which is pathogenic to D. saccharalis; (ii) the fungus Metarhizium anisopliae ESALQE9 strain, which is employed to control the froghoppers of the genus Mahanarva in sugarcane fields, though it exhibits low virulence to D. saccharalis; and (iii) the generalist parasitoid Tetrastichus howardi. Our results demonstrate that B. thuringiensis at LC induced the expression of DsRelish at 24 h and DsSTAT at 48 h after treatment initiation. In contrast, treatment with the M. anisopliae ESALQE9 strain reduced the levels of DsDorsal and DsSTAT 24 h post-infection compared to the control group. In larvae, DsDorsal, DsSTAT, DsPPO1, and DsPPO2 were induced in response to T. howardi, whereas no induction was observed in pupae. Notably, no immune-related genes were modulated during the pupae-parasitoid interaction. Additionally, we provide an explanation for why T. howardi shows superior parasitism success in D. saccharalis pupae compared with larvae. The data presented here introduce novel perspectives for enhancing pest management through the utilization of biocontrol agents.
ISSN:1096-0805