Tailored peptide nanomaterials for receptor targeted prostate cancer imaging

We report the development of a peptide-based optical nanoprobe specifically tailored for prostate cancer imaging. The imaging probe is comprised of cyclic peptide nanotubes, formed via the aqueous co-assembly of four cyclic d , l -alternating octapeptides. The inherent properties of these cyclic bui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-12, Vol.16 (47), p.221-221
Hauptverfasser: Santillán, Fátima, Charron, Carlie L, Galarreta, Betty C, Luyt, Leonard G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the development of a peptide-based optical nanoprobe specifically tailored for prostate cancer imaging. The imaging probe is comprised of cyclic peptide nanotubes, formed via the aqueous co-assembly of four cyclic d , l -alternating octapeptides. The inherent properties of these cyclic building blocks have been carefully selected to enhance their efficacy in imaging applications, through the addition of a cancer targeting peptide and a fluorescent dye. Comprehensive characterization using scanning electron microscopy (FESEM) and low-voltage transmission electron microscopy (LV-TEM) confirms the formation of nanotubes through co-assembly of the cyclic peptides. The resulting nanotubes show an average diameter of 28 nm. Circular dichroism (CD) spectroscopy validates the formation of stable beta-sheet hydrogen bonding structures at both 20 and 37 °C, ensuring their suitability for biomedical applications. Evaluation of PSMA-binding specificity of the resulting peptide nanotubes is assessed using confocal fluorescence microscopy demonstrating receptor-mediated uptake in prostate cancer cells. We anticipate this strategy will provide the basis for the utilization of co-assembled systems for advancing molecular imaging techniques in prostate cancer and other cancers. This study reports on a cancer targeted nanomaterial created from cyclic octapeptides that is tailored for the optical imaging of prostate cancer. The strategy focuses on the co-assembly of four specific templates into cyclic peptide nanotubes.
ISSN:2040-3364
2040-3372
2040-3372
DOI:10.1039/d4nr03273j