Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO 3 /SiO 2 /Poly-Si/Si Substrate for Improved Performance and Miniaturization

A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-10, Vol.15 (10)
Hauptverfasser: Tang, Panliang, Pan, Hongzhi, Workie, Temesgen Bailie, Mi, Jia, Bao, Jingfu, Hashimoto, Ken-Ya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO /poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device.
ISSN:2072-666X
2072-666X