The exciton dynamics and charge transfer in polymers with the effects of chlorine substituents

Donor-acceptor (DA) type conjugated polymers, particularly those with electron-withdrawing halogen substituents, have demonstrated high efficiency as donor materials in solar energy conversion. In our previous work, we have successfully synthesized three low-cost D-A type conjugated polymers (design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-10, Vol.26 (38), p.2598-2514
Hauptverfasser: Han, Xu, Ran, Guangliu, Lu, Hao, Sun, Shumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Donor-acceptor (DA) type conjugated polymers, particularly those with electron-withdrawing halogen substituents, have demonstrated high efficiency as donor materials in solar energy conversion. In our previous work, we have successfully synthesized three low-cost D-A type conjugated polymers (designated as PJ-1, PJ-2, and PJ-3) through a gradual chlorination process, of which, devices based on PJ-1 exhibited exceptional power conversion efficiency (15.01%) and figure-of-merit values (45.48). In this study, we further investigated the excited-state dynamics of the three donor polymers by transient absorption spectroscopy to explore the dynamic reasons behind the high power conversion efficiency of PJ-1. Our findings revealed that PJ-1 exhibited pronounced aggregation, which facilitated intermolecular interactions, thereby enhancing charge transport capability and suppressing trap-assisted recombination. Furthermore, the PJ-1-based heterojunction presented efficient exciton dissociation and enhanced hole transfer efficiency. These results underscore the potential of chlorine substitution in improving exciton dissociation and charge transfer via regulating aggregation behavior and energy level, offering a straightforward and effective approach to engineer high-performance conjugated polymer donor materials for photovoltaic applications. Transient absorption spectroscopy was used to study low-cost D-A type polymer donors with chlorine substituents, revealing that optimizing these chlorine substituents can enhance the diffusion coefficient and hole transfer efficiency.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/d4cp02642j