Assessing soil CO 2 emission on eucalyptus species using UAV-based reflectance and vegetation indices
Eucalyptus species play an important role in the global carbon cycle, especially in reducing the greenhouse effect as well as storing atmospheric CO₂. Thus, assessing the amount of CO₂ released by the soil in forest areas can generate important information for environmental monitoring. This study ai...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-08, Vol.14 (1), p.20277 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eucalyptus species play an important role in the global carbon cycle, especially in reducing the greenhouse effect as well as storing atmospheric CO₂. Thus, assessing the amount of CO₂ released by the soil in forest areas can generate important information for environmental monitoring. This study aims to verify the relation between soil carbon dioxide (CO₂) flux (FCO₂), spectral bands, and vegetation indices (VIs) derived from a UAV-based multispectral camera over an area of eucalyptus species. Multispectral imageries (green, red-edge, and near-infrared) from the Parrot Sequoia sensor, derived vegetation indices, and the FCO₂ data from a LI-COR 8100 analyzer, combined with soil moisture and temperature data, were collected and related. The vegetation indices ATSAVI (Adjusted Transformed Soil-Adjusted VI), GSAVI (Green Soil Adjusted Vegetation Index), and SAVI (Soil-Adjusted Vegetation Index), which use soil correction factors, exhibited a strong negative correlation with FCO₂ for the species E. camaldulensis, E. saligna, and E. urophylla species. A Multivariate Analysis of Variance showed significance (p |
---|---|
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-024-71430-2 |