Gaseous Object Detection

Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.10715-10731
Hauptverfasser: Zhou, Kailai, Wang, Yibo, Lv, Tao, Shen, Qiu, Cao, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor on a scarcely explored task named Gaseous Object Detection (GOD), which is undertaken to explore whether the object detection techniques can be extended from solid substances to gaseous substances. Nevertheless, the gas exhibits significantly different visual characteristics: 1) saliency deficiency, 2) arbitrary and ever-changing shapes, 3) lack of distinct boundaries. To facilitate the study on this challenging task, we construct a GOD-Video dataset comprising 600 videos (141,017 frames) that cover various attributes with multiple types of gases. A comprehensive benchmark is established based on this dataset, allowing for a rigorous evaluation of frame-level and video-level detectors. Deduced from the Gaussian dispersion model, the physics-inspired Voxel Shift Field (VSF) is designed to model geometric irregularities and ever-changing shapes in potential 3D space. By integrating VSF into Faster RCNN, the VSF RCNN serves as a simple but strong baseline for gaseous object detection. Our work aims to attract further research into this valuable albeit challenging area.
ISSN:0162-8828
1939-3539
1939-3539
2160-9292
DOI:10.1109/TPAMI.2024.3449994