An ultrasensitive dual-mode stagey for 17β-estradiol assay: Photoelectrochemical and colorimetric biosensor based on a WSe 2 /TiO 2 -modified electrode coupled with nucleic acid amplification

The abuse of 17β-estradiol(E2) has aroused wide concern in environmental and biomedical fields, which severely affects the endocrine function of human and animals. Therefore, an ultrasensitive and accurate assay of E2 is critically important. Traditional chromatography or immunoassay techniques exhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2024-08, Vol.1319, p.342966
Hauptverfasser: Jia, Licong, Wang, Yipeng, Jiang, Meng, Yuan, Wei, Jin, Yan, Yan, Wen, Ze, Xi, Chen, Yuan, Niu, Lingmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The abuse of 17β-estradiol(E2) has aroused wide concern in environmental and biomedical fields, which severely affects the endocrine function of human and animals. Therefore, an ultrasensitive and accurate assay of E2 is critically important. Traditional chromatography or immunoassay techniques exhibited good sensitivity and selectivity, but expensive instruments and antibodies may pose cost and stability issues, as well as difficulties in meeting on-site detection requirements. Ultrasensitive, reliable, and on-site detection of E2 at trace level remains a challenge. Hence, developing a simple, ultrasensitive assay to simultaneously achieve accurate detection and rapid visual analysis of E2 is extremely crucial. We developed a versatile dual-mode photoelectrochemical (PEC) and colorimetric biosensor based on isothermal nucleic acid amplification strategy for the ultrasensitive and accurate detection of E2. The method modified titanium dioxide (TiO ) with tungsten selenide (WSe ) nanoflowers to synthesize WSe /TiO heterostructures as a substrate for signal amplification and nanoprobe modification. Isothermal nucleic acid amplification strategy has been proven to be a powerful tool for strong signal amplification. The presence of a target triggered the nucleic acid amplification reaction, and produced a large amount of tDNA that competed with G-quadruplex immobilized on the electrode surface. The remaining G-quadruplex/hemin catalyzed the 4-chloro-1-naphthol (4-CN) to form biocatalytic precipitation (BCP) and ABTS-H O chromogenic reaction, thus, the dual-mode platform was capable of achieving PEC-colorimetric ultrasensitive detection based on the catalytic activity of G-quadruplex/hemin DNAzyme. Within optimal conditions, the dual-mode biosensor exhibited a remarkable detection limit as low as 0.026 pM. Benefiting from the superior performance of WSe /TiO and the power signal amplification of isothermal nucleic acid amplification strategy, this aptasensor achieved the ultrasensitive detection of E2. The independent transmission paths of photoelectrochemical and colorimetric provide mutual support and flexible switching, significantly enhancing the overall sensitivity and accuracy of the detection strategy, which can meet the needs for E2 precise quantification and rapid on-site detection.
ISSN:1873-4324
DOI:10.1016/j.aca.2024.342966