Technological affinity index for interaction between lactic acid bacteria and Saccharomyces cerevisiae strains to modulate the fruity and loreal aroma of Catarratto wines
Microbial interactions during the fermentation process influence the sensory characteristics of wines. Alongside alcoholic fermentation, malolactic fermentation also plays a crucial role in determining the aromatic traits of wines. The time (t), rate (m) and volatile organic compounds (VOCs) of malo...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-12, Vol.460 (Pt 3), p.140647 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial interactions during the fermentation process influence the sensory characteristics of wines. Alongside alcoholic fermentation, malolactic fermentation also plays a crucial role in determining the aromatic traits of wines. The time (t), rate (m) and volatile organic compounds (VOCs) of malolactic fermentation are linked to the interaction between yeasts and lactic acid bacteria. The study investigated the interactions between Lactiplantibacillus plantarum or Oenococcus oeni with Saccharomyces cerevisiae by using the Technological Affinity Index (TAIndex). The co-inoculation of L. plantarum/S. cerevisiae resulted in a higher TAIndex than the co-inoculation of O. oeni/S. cerevisiae conditions. A low TAIndex led to increased aromaticity of the wines. The time and rate of malolactic fermentation have a strong impact on the synthesis of VOCs with a high olfactory impact. Therefore, knowledge of the TAIndex could play a decisive role in improving winemaking planning to produce wines with higher fruit and floral perceptions. |
---|---|
ISSN: | 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.140647 |