Synthesis of Mesoporous Tetragonal ZrO 2 , TiO 2 and Solid Solutions and Effect of Colloidal Silica on Porosity
Metal oxides possessing a large surface area, pore volume and desirable pore size provide more varieties and active industrial potentials. Nevertheless, it is very challenging to produce crystal metal oxides while keeping satisfactory porosity features, especially for ternary compositions. High temp...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-07, Vol.29 (14) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal oxides possessing a large surface area, pore volume and desirable pore size provide more varieties and active industrial potentials. Nevertheless, it is very challenging to produce crystal metal oxides while keeping satisfactory porosity features, especially for ternary compositions. High temperature is usually needed to produce crystal metal oxides, which readily leads to the collapse of the pore structure. Herein, by employing a 'soft' dispersant agent and a hard silica template, ZrO
, TiO
and Zr-Ti solid solutions having a tetragonal crystal structure are produced and the silica-leached materials are characterized from macroscopic to atomistic scales. The micron-sized particulate powders are composed of nanoscale 'building blocks', with crystallite sizes between ~8 and 21 nm. These polycrystalline ceramic powders exhibit a high specific surface area (up to ~200 m
·g
) and pore volume (up to 0.5 cm
·g
), with a pore size range of ~5-20 nm. Importantly, the Zr/Ti-O-Si-OH chemical bonds exist on the particle surface, with about two-thirds of the surface covered by silica. The hydroxyl groups can further post-graft organic ligands or directly associate with species. Synthesized mesoporous metal oxides are highly homogenous and could potentially be used in various applications because of their tetragonal structure and porosity features. |
---|---|
ISSN: | 1420-3049 |