Prediction of the 3D conformation of a small peptide vaccine targeting Aβ42 oligomers
The original etiology of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) proteins, which starts from the aggregation of the Aβ oligomers. The optimal therapeutic strategy targeting Aβ oligomer aggregation is the development of AD vaccines. Despite the fact that positive progress...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-07, Vol.26 (29), p.287-212 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The original etiology of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) proteins, which starts from the aggregation of the Aβ oligomers. The optimal therapeutic strategy targeting Aβ oligomer aggregation is the development of AD vaccines. Despite the fact that positive progress has been made for experimental attempts at AD vaccines, the physicochemical and even structural properties of these AD vaccines remain unclear. In this study, through immunoinformatic and molecular dynamics (MD) simulations, we first designed and simulated an alternative of vaccine TAPAS and found that the structure of the alternative can reproduce the 3D conformation of TAPAS determined experimentally. Meanwhile, immunoinformatic methods were used to analyze the physicochemical properties of TAPAS, including immunogenicity, antigenicity, thermal stability, and solubility, which confirm well the efficacy and safety of the vaccine, and validate the scheme reliability of immunoinformatic and MD simulations in designing and simulating the TAPAS vaccine. Using the same scheme, we predicted the 3D conformation of the optimized ACI-24 peptide vaccine, an Aβ peptide with the first 15 residues of Aβ
42
(Aβ
1-15
). The vaccine was verified once to be effective against both full-length Aβ
1-42
and truncated Aβ
4-42
aggregates, but an experimental 3D structure was absent. We have also explored the immune mechanism of the vaccine at the molecular level and found that the optimized ACI-24 and its analogues can block the growth of either full-length Aβ
1-42
or truncated Aβ
4-42
pentamer by contacting the hydrophobic residues within the N-terminus and β1 region on the contact surface of either pentamer. Additionally, residues (D1, D7, S8, H13, and Q15) were identified as the key residues of the vaccine to contact either of the two Aβ oligomers. This work provides a feasible implementation scheme of immunoinformatic and MD simulations for the development of AD small peptide vaccines, validating the power of the scheme as a parallel tool to the experimental approaches and injecting molecular-level information into the understanding and design of anti-AD vaccines.
Theoretical schemes for vaccine prediction and practical application in predicting the 3D conformation of a small peptide vaccine targeting Aβ42 oligomers. |
---|---|
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/d4cp02078b |