The ion-activated attractive patchy particle model and its application to the liquid–vapor phase transitions
Patchy particles are an intriguing subject of study and indeed a model system in the field of soft matter physics. In recent years, patchy particle models have been applied to describe a wide variety of systems, including colloidal crystals, macromolecular interactions, liquid crystals, and nanopart...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-07, Vol.161 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patchy particles are an intriguing subject of study and indeed a model system in the field of soft matter physics. In recent years, patchy particle models have been applied to describe a wide variety of systems, including colloidal crystals, macromolecular interactions, liquid crystals, and nanoparticle assemblies. Given the importance of the topic, rationalizing and capturing the basic features of these models is crucial to their correct application in specific systems. In this study, we extend the ion-activated attractive patchy particles model previously employed to elucidate the phase behavior of protein solutions in the presence of trivalent salts. Our extension incorporates the effect of repulsion between unoccupied and occupied binding sites, depicted as patches. Furthermore, we examine the influence of model parameters on the liquid–vapor coexistence region within the phase diagram, employing numerical methods. A deeper understanding of this model will facilitate a better comprehension of the effects observed in experiments. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0215920 |