Palladium-catalyzed selective C-C bond cleavage of keto-vinylidenecyclopropanes: construction of structurally rich dihydrofurans and tetrahydrofurans

Palladium-catalyzed selective cleavage of the distal C-C bond and proximal C-C bond of keto-vinylidenecyclopropanes by altering the sterically bulky phosphine ligands has been realized. The proximal C-C bond cleavage can be achieved by using dtbpf as a phosphine ligand, affording bicyclic products c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-06, Vol.15 (24), p.9192-92
Hauptverfasser: Ning, Chao, Yu, Ziqi, Shi, Min, Wei, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palladium-catalyzed selective cleavage of the distal C-C bond and proximal C-C bond of keto-vinylidenecyclopropanes by altering the sterically bulky phosphine ligands has been realized. The proximal C-C bond cleavage can be achieved by using dtbpf as a phosphine ligand, affording bicyclic products containing dihydrofuran skeletons in good yields along with broad substrate scope. In proximal C-C bond cleavage reactions, the eight-membered cyclic palladium intermediate plays a key role in the reaction. The [3 + 2] cycloaddition of keto-vinylidenecyclopropanes through the distal C-C bond cleavage can be effectively accomplished with t BuXPhos as a phosphine ligand and ZnCl 2 as an additive, delivering bicyclic products containing tetrahydrofuran skeletons in good yields. The further transformation of these bicyclic products has been demonstrated, and the reaction mechanisms of two different C-C bond cleavage reactions have been investigated by control experiments and DFT calculations. A series of bicyclic products containing dihydrofuran and tetrahydrofuran skeletons were obtained by divergent palladium-catalyzed selective C-C bond cleavage of keto-VDCPs. The reaction mechanism was also investigated systematically.
ISSN:2041-6520
2041-6539
DOI:10.1039/d4sc02536a