Study on the photo/electrochemical bi-functional properties of a coupling interface of Ru[dcbpy] 3 2+ -AMT/Au by SECM imaging-based joint analytical method
A photo/electrochemical coupling interface of Ru[dcbpy] -AMT/Au (AMT; 5-Amino-1,3,4-thiadiazole-2-thiol) was fabricated using a dehydration condensation sulfhydrating method. For the interface functional properties, a combined dual-signal recording (CDSR) method was applied to characterize the respo...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2024-06, Vol.277, p.126423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A photo/electrochemical coupling interface of Ru[dcbpy]
-AMT/Au (AMT; 5-Amino-1,3,4-thiadiazole-2-thiol) was fabricated using a dehydration condensation sulfhydrating method. For the interface functional properties, a combined dual-signal recording (CDSR) method was applied to characterize the response characteristics, and a scanning electrochemical microscopy-electrochemiluminescence (SECM-ECL) imaging was developed to assess the interface distribution uniformity. The interface biosensing compatibility was validated by constructing a simple DNA sensor. The research results show that the interaction between the two functional parameters follows a synergistic effect mechanism in the coupling conditions and an interference effect mechanism in the detection condition. Under optimized conditions, the saturation dual-signal response values are 156.0 and 86.8 μA, respectively. The statistics and imaging comparison analysis validate good interface distribution uniformity and stability performance. The DNA sensor's dual-signal detection limits to the signal probe (SP) are ∼30 fM and 0.3 pM with linear ranges of 100.0 fM ∼ 1.0 nM and 1.0 pM ∼ 10.0 nM, respectively. The fabricated interface exhibits an effective bi-functional response performance compatible with biosensing. The proposed imaging method has a high technical fit for studying photo/electrochemical coupling interfaces and can also provide a reference for other similar coupling interface analyses. |
---|---|
ISSN: | 1873-3573 |
DOI: | 10.1016/j.talanta.2024.126423 |