An information theory approach to stock market liquidity

A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-06, Vol.34 (6)
Hauptverfasser: Bianchi, S., Bruni, V., Frezza, M., Marconi, S., Pianese, A., Vantaggi, B., Vitulano, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 34
creator Bianchi, S.
Bruni, V.
Frezza, M.
Marconi, S.
Pianese, A.
Vantaggi, B.
Vitulano, D.
description A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrices consist of entries that represent the scaling parameters relating pairs of distributions of price changes constructed for different temporal scales (or investment horizons); (b) the utilization of information theory, specifically the Normalized Compression Distance, to quantify the relative complexity and ascertain the similarities between pairs of self-similarity matrices. Through this methodology, distinct patterns can be identified and they may delineate the levels and the composition of market liquidity. An application to the U.S. stock index S&P500 shows the effectiveness of the proposed methodology.
doi_str_mv 10.1063/5.0213429
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38865096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066955747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p171t-27017cbfdcdd25849c1bc832cbf76ab8569ea0efa9a3ca397d14c00ea2e9caab3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw4A8gS9yQUtZ2_DpWFS-pEhc4W47jqG6bOE2cQ_89KS2cdrX6NDszCN0TmBMQ7JnPgRKWU32BpgSUzqRQ9PK48zwjHGCCbvp-AwCEMn6NJkwpwUGLKVKLBoemil1tU4gNTmsfuwO2bdtF69Y4Rdyn6La4tt3WJ7wL-yGUIR1u0VVld72_O88Z-n59-Vq-Z6vPt4_lYpW1RJKUUQlEuqIqXVlSrnLtSOEUo-NJClsoLrS34CurLXOWaVmS3AF4S7121hZshh5PuqOh_eD7ZDZx6JrxpWEghOZc5nKkHs7UUNS-NG0XRsMH8xd0BJ5OQO9C-o36zxAwxxYNN-cW2Q87FGGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066955747</pqid></control><display><type>article</type><title>An information theory approach to stock market liquidity</title><source>AIP Journals Complete</source><creator>Bianchi, S. ; Bruni, V. ; Frezza, M. ; Marconi, S. ; Pianese, A. ; Vantaggi, B. ; Vitulano, D.</creator><creatorcontrib>Bianchi, S. ; Bruni, V. ; Frezza, M. ; Marconi, S. ; Pianese, A. ; Vantaggi, B. ; Vitulano, D.</creatorcontrib><description>A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrices consist of entries that represent the scaling parameters relating pairs of distributions of price changes constructed for different temporal scales (or investment horizons); (b) the utilization of information theory, specifically the Normalized Compression Distance, to quantify the relative complexity and ascertain the similarities between pairs of self-similarity matrices. Through this methodology, distinct patterns can be identified and they may delineate the levels and the composition of market liquidity. An application to the U.S. stock index S&amp;P500 shows the effectiveness of the proposed methodology.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0213429</identifier><identifier>PMID: 38865096</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Complexity ; Information theory ; Methodology ; Self-similarity</subject><ispartof>Chaos (Woodbury, N.Y.), 2024-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6198-4566 ; 0000-0003-3909-7463 ; 0000-0002-3651-3743 ; 0000-0002-4916-4896 ; 0000-0003-0276-4090 ; 0000-0002-5574-6008 ; 0000-0001-6088-9743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchi, S.</creatorcontrib><creatorcontrib>Bruni, V.</creatorcontrib><creatorcontrib>Frezza, M.</creatorcontrib><creatorcontrib>Marconi, S.</creatorcontrib><creatorcontrib>Pianese, A.</creatorcontrib><creatorcontrib>Vantaggi, B.</creatorcontrib><creatorcontrib>Vitulano, D.</creatorcontrib><title>An information theory approach to stock market liquidity</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrices consist of entries that represent the scaling parameters relating pairs of distributions of price changes constructed for different temporal scales (or investment horizons); (b) the utilization of information theory, specifically the Normalized Compression Distance, to quantify the relative complexity and ascertain the similarities between pairs of self-similarity matrices. Through this methodology, distinct patterns can be identified and they may delineate the levels and the composition of market liquidity. An application to the U.S. stock index S&amp;P500 shows the effectiveness of the proposed methodology.</description><subject>Complexity</subject><subject>Information theory</subject><subject>Methodology</subject><subject>Self-similarity</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw4A8gS9yQUtZ2_DpWFS-pEhc4W47jqG6bOE2cQ_89KS2cdrX6NDszCN0TmBMQ7JnPgRKWU32BpgSUzqRQ9PK48zwjHGCCbvp-AwCEMn6NJkwpwUGLKVKLBoemil1tU4gNTmsfuwO2bdtF69Y4Rdyn6La4tt3WJ7wL-yGUIR1u0VVld72_O88Z-n59-Vq-Z6vPt4_lYpW1RJKUUQlEuqIqXVlSrnLtSOEUo-NJClsoLrS34CurLXOWaVmS3AF4S7121hZshh5PuqOh_eD7ZDZx6JrxpWEghOZc5nKkHs7UUNS-NG0XRsMH8xd0BJ5OQO9C-o36zxAwxxYNN-cW2Q87FGGB</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Bianchi, S.</creator><creator>Bruni, V.</creator><creator>Frezza, M.</creator><creator>Marconi, S.</creator><creator>Pianese, A.</creator><creator>Vantaggi, B.</creator><creator>Vitulano, D.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6198-4566</orcidid><orcidid>https://orcid.org/0000-0003-3909-7463</orcidid><orcidid>https://orcid.org/0000-0002-3651-3743</orcidid><orcidid>https://orcid.org/0000-0002-4916-4896</orcidid><orcidid>https://orcid.org/0000-0003-0276-4090</orcidid><orcidid>https://orcid.org/0000-0002-5574-6008</orcidid><orcidid>https://orcid.org/0000-0001-6088-9743</orcidid></search><sort><creationdate>202406</creationdate><title>An information theory approach to stock market liquidity</title><author>Bianchi, S. ; Bruni, V. ; Frezza, M. ; Marconi, S. ; Pianese, A. ; Vantaggi, B. ; Vitulano, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p171t-27017cbfdcdd25849c1bc832cbf76ab8569ea0efa9a3ca397d14c00ea2e9caab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Information theory</topic><topic>Methodology</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, S.</creatorcontrib><creatorcontrib>Bruni, V.</creatorcontrib><creatorcontrib>Frezza, M.</creatorcontrib><creatorcontrib>Marconi, S.</creatorcontrib><creatorcontrib>Pianese, A.</creatorcontrib><creatorcontrib>Vantaggi, B.</creatorcontrib><creatorcontrib>Vitulano, D.</creatorcontrib><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, S.</au><au>Bruni, V.</au><au>Frezza, M.</au><au>Marconi, S.</au><au>Pianese, A.</au><au>Vantaggi, B.</au><au>Vitulano, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An information theory approach to stock market liquidity</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-06</date><risdate>2024</risdate><volume>34</volume><issue>6</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrices consist of entries that represent the scaling parameters relating pairs of distributions of price changes constructed for different temporal scales (or investment horizons); (b) the utilization of information theory, specifically the Normalized Compression Distance, to quantify the relative complexity and ascertain the similarities between pairs of self-similarity matrices. Through this methodology, distinct patterns can be identified and they may delineate the levels and the composition of market liquidity. An application to the U.S. stock index S&amp;P500 shows the effectiveness of the proposed methodology.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38865096</pmid><doi>10.1063/5.0213429</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6198-4566</orcidid><orcidid>https://orcid.org/0000-0003-3909-7463</orcidid><orcidid>https://orcid.org/0000-0002-3651-3743</orcidid><orcidid>https://orcid.org/0000-0002-4916-4896</orcidid><orcidid>https://orcid.org/0000-0003-0276-4090</orcidid><orcidid>https://orcid.org/0000-0002-5574-6008</orcidid><orcidid>https://orcid.org/0000-0001-6088-9743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2024-06, Vol.34 (6)
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_38865096
source AIP Journals Complete
subjects Complexity
Information theory
Methodology
Self-similarity
title An information theory approach to stock market liquidity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20information%20theory%20approach%20to%20stock%20market%20liquidity&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Bianchi,%20S.&rft.date=2024-06&rft.volume=34&rft.issue=6&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0213429&rft_dat=%3Cproquest_pubme%3E3066955747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066955747&rft_id=info:pmid/38865096&rfr_iscdi=true