An information theory approach to stock market liquidity
A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrice...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2024-06, Vol.34 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel methodology is introduced to dynamically analyze the complex scaling behavior of financial data across various investment horizons. This approach comprises two steps: (a) the application of a distribution-based method for the estimation of time-varying self-similarity matrices. These matrices consist of entries that represent the scaling parameters relating pairs of distributions of price changes constructed for different temporal scales (or investment horizons); (b) the utilization of information theory, specifically the Normalized Compression Distance, to quantify the relative complexity and ascertain the similarities between pairs of self-similarity matrices. Through this methodology, distinct patterns can be identified and they may delineate the levels and the composition of market liquidity. An application to the U.S. stock index S&P500 shows the effectiveness of the proposed methodology. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0213429 |