Regulation of THI and PDC genes by Pdc2 in Nakaseomyces glabratus (Candida glabrata) is complex

Thiamine (vitamin B1) is essential for glucose catabolism. In the yeast species Nakaseomyces glabratus (formerly Candida glabrata) and Saccharomyces cerevisiae, the transcription factor Pdc2 (with Thi3 and Thi2) upregulates pyruvate decarboxylase (PDC) genes and thiamine biosynthetic and acquisition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2024-06
Hauptverfasser: Dottor, Cory A, Iosue, Christine L, Loshnowsky, Anita M, Hopkins, Rachael A, Stauffer, Peyton L, Ugras, Julia M, Spagnuola, Jack C, Kraut, Daniel A, Wykoff, Dennis D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiamine (vitamin B1) is essential for glucose catabolism. In the yeast species Nakaseomyces glabratus (formerly Candida glabrata) and Saccharomyces cerevisiae, the transcription factor Pdc2 (with Thi3 and Thi2) upregulates pyruvate decarboxylase (PDC) genes and thiamine biosynthetic and acquisition (THI) genes during starvation. There have not been genome-wide analyses of Pdc2 binding. Previously, we identified small regions of Pdc2 regulated genes sufficient to confer thiamine regulation. Here, we performed deletion analyses on these regions. We observed that when the S. cerevisiae PDC5 promoter is introduced into N. glabratus, it is thiamine starvation inducible but does not require the Thi3 coregulator. The ScPDC5 promoter contains a 22 bp duplication with an AT-rich spacer between the two repeats, which are important for regulation. Loss of the first 22 bp element does not eliminate regulation, but the promoter becomes Thi3-dependent, suggesting cis architecture can generate a Thi3-independent, thiamine starvation inducible response. Whereas many THI promoters only have one copy of this element, addition of the first 22 bp element to a Thi3-dependent promoter confers Thi3-independence. Finally, we performed fluorescence anisotropy and ChIP-seq. Pdc2 and Thi3 bind to regions that share similarity to the 22 bp element in the ScPDC5 promoter and previously identified cis elements in N. glabratus promoters. Also, while Pdc2 binds to THI and PDC promoters, neither Pdc2 nor Thi3 appear to bind the evolutionarily new NgPMU3 promoter that is regulated by Pdc2. Further study is warranted because PMU3 is required for cells to acquire thiamine from environments where thiamine is phosphorylated, such as in the human bloodstream.
ISSN:2160-1836
DOI:10.1093/g3journal/jkae132