An EEG channel selection method for motor imagery based on Fisher score and local optimization

. Multi-channel electroencephalogram (EEG) technology in brain-computer interface (BCI) research offers the advantage of enhanced spatial resolution and system performance. However, this also implies that more time is needed in the data processing stage, which is not conducive to the rapid response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2024-06, Vol.21 (3), p.36030
Hauptverfasser: Luo, Yangjie, Mu, Wei, Wang, Lu, Wang, Junkongshuai, Wang, Pengchao, Gan, Zhongxue, Zhang, Lihua, Kang, Xiaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. Multi-channel electroencephalogram (EEG) technology in brain-computer interface (BCI) research offers the advantage of enhanced spatial resolution and system performance. However, this also implies that more time is needed in the data processing stage, which is not conducive to the rapid response of BCI. Hence, it is a necessary and challenging task to reduce the number of EEG channels while maintaining decoding effectiveness. . In this paper, we propose a local optimization method based on the Fisher score for within-subject EEG channel selection. Initially, we extract the common spatial pattern characteristics of EEG signals in different bands, calculate Fisher scores for each channel based on these characteristics, and rank them accordingly. Subsequently, we employ a local optimization method to finalize the channel selection. . On the BCI Competition IV Dataset IIa, our method selects an average of 11 channels across four bands, achieving an average accuracy of 79.37%. This represents a 6.52% improvement compared to using the full set of 22 channels. On our self-collected dataset, our method similarly achieves a significant improvement of 24.20% with less than half of the channels, resulting in an average accuracy of 76.95%. . This research explores the importance of channel combinations in channel selection tasks and reveals that appropriately combining channels can further enhance the quality of channel selection. The results indicate that the model selected a small number of channels with higher accuracy in two-class motor imagery EEG classification tasks. Additionally, it improves the portability of BCI systems through channel selection and combinations, offering the potential for the development of portable BCI systems.
ISSN:1741-2560
1741-2552
1741-2552
DOI:10.1088/1741-2552/ad504a