Dual biomarkers-activatable hollow MnO 2 -Based theranostic nanoplatform for efficient breast cancer-specific multisite fluorescence imaging and synergistic therapy

Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2024-05, Vol.1303, p.342521
Hauptverfasser: Ning, Juan, Hu, Guizhen, Wu, Tian, Zhao, Yijun, Nie, Yamin, Zhou, Yanmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO (H-MnO )-based theranostic nanoplatform, DNAzyme@H-MnO -MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL μg ) and FAM-DNAzyme (3.37 pmoL μg ), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.
ISSN:1873-4324