CDs-g-C 3 N 4 -oleaginous yeast hybrid system: Microbial lipid synthesis and fermentation residual reutilization

The utilization of solar energy and fast-growing heterotrophic microbes for biofuel production has been recognized as a promising approach to achieve carbon neutrality and address energy crisis. In this work, we synthesized different kinds of photocatalysts based on graphitic carbon nitride (g-C N )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-05, Vol.924, p.171639
Hauptverfasser: Yu, Yadong, Wang, Shanshan, Lv, Shaopeng, Wang, Laiyou, Guo, Shuxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utilization of solar energy and fast-growing heterotrophic microbes for biofuel production has been recognized as a promising approach to achieve carbon neutrality and address energy crisis. In this work, we synthesized different kinds of photocatalysts based on graphitic carbon nitride (g-C N ). We found that carbon dots modified-graphitic carbon nitride (CDs-g-C N ) showed the highest photocatalytic activity. Subsequently, we developed a photocatalyst-microbe hybrid (PMH) system by combining CDs-g-C N with an oleaginous yeast strain, Cutaneotrichosporon dermatis ZZ-46. Under visible light irradiation, the lipid yield of this PMH system reached 1.70 g/L at 120 h, representing a 36 % increase compared to the control. The photocatalytic reaction-induced ROS and the reductive photogenerated electrons facilitated ZZ-46 cells to synthesize more lipids. Furthermore, the fermentation residual of this PMH system was reutilized to prepare biochar via pyrolysis. The biochar generated at 550 °C (BC-550) demonstrated exceptional adsorption capabilities, particularly with a 57 % adsorption rate for methylene blue (MB), and maintained its perfect adsorption efficacy even after five regeneration cycles. These results offer promising avenues for addressing energy shortages and environmental contamination.
ISSN:1879-1026
DOI:10.1016/j.scitotenv.2024.171639