Computational screening of layered metal chalcogenide materials for HER electrocatalysts, and its synergy with experiments

Layered materials have emerged as attractive candidates in our search for abundant, inexpensive and efficient hydrogen evolution reaction (HER) catalysts, due to larger specific area these offer. Among these, transition metal dichalcogenides have been studied extensively, while ternary transition me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-06, Vol.36 (22), p.223002
1. Verfasser: Sen, Prasenjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Layered materials have emerged as attractive candidates in our search for abundant, inexpensive and efficient hydrogen evolution reaction (HER) catalysts, due to larger specific area these offer. Among these, transition metal dichalcogenides have been studied extensively, while ternary transition metal tri-chalcogenides have emerged as promising candidates recently. Computational screening has emerged as a powerful tool to identify the promising materials out of an initial set for specific applications, and has been employed for identifying HER catalysts also. This article presents a comprehensive review of how computational screening studies based on density functional calculations have successfully identified the promising materials among the layered transition metal di- and tri-chalcogenides. Synergy of these computational studies with experiments is also reviewed. It is argued that experimental verification of the materials, predicted to be efficient catalysts but not yet tested, will enlarge the list of materials that hold promise to replace expensive platinum, and will help ushering in the much awaited hydrogen economy.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/ad2d45