Interfacial chemical reactivity enhancement

Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-02, Vol.160 (8)
1. Verfasser: Ben-Amotz, Dor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Ben-Amotz, Dor
description Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.
doi_str_mv 10.1063/5.0186945
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38391019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930972704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e8cfab03ed52a84275df4feb9a020a61d8ebd9630c8a5f846f5d7dface4f01153</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMotlYP_gERPKlsnXxucpTiR6HgRc8hm0zolu5uzaZC_70rrR49zRweb4ZHyCWFKQXFH-QUqFZGyCMypqBNUSoDx2QMwGhhFKgROev7FQDQkolTMuKaGwrUjMn9vM2YovO1W1_7JTa1H5aEzuf6q867a2yXrvXYYJvPyUl06x4vDnNCPp6f3mevxeLtZT57XBSeS8gFah9dBRyDZE4LVsoQRcTKOGDgFA0aq2AUB6-djFqoKEMZhhdQRKBU8gm52Xs3qfvcYp_tqtumdjhpmeFgSlaCGKjbPeVT1_cJo92kunFpZynYnyxW2kOWgb06GLdVg-GP_O0wAHd7oPd1drnu2n9s33ezaWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930972704</pqid></control><display><type>article</type><title>Interfacial chemical reactivity enhancement</title><source>AIP Journals Complete</source><creator>Ben-Amotz, Dor</creator><creatorcontrib>Ben-Amotz, Dor</creatorcontrib><description>Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0186945</identifier><identifier>PMID: 38391019</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; Aromaticity ; Charge transfer ; Chemical reactions ; Droplets ; Free energy ; Micelles ; Molecular structure ; Reactivity ; Surface chemistry</subject><ispartof>The Journal of chemical physics, 2024-02, Vol.160 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e8cfab03ed52a84275df4feb9a020a61d8ebd9630c8a5f846f5d7dface4f01153</citedby><cites>FETCH-LOGICAL-c350t-e8cfab03ed52a84275df4feb9a020a61d8ebd9630c8a5f846f5d7dface4f01153</cites><orcidid>0000-0003-4683-5401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0186945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38391019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben-Amotz, Dor</creatorcontrib><title>Interfacial chemical reactivity enhancement</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.</description><subject>Adsorption</subject><subject>Aromaticity</subject><subject>Charge transfer</subject><subject>Chemical reactions</subject><subject>Droplets</subject><subject>Free energy</subject><subject>Micelles</subject><subject>Molecular structure</subject><subject>Reactivity</subject><subject>Surface chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMotlYP_gERPKlsnXxucpTiR6HgRc8hm0zolu5uzaZC_70rrR49zRweb4ZHyCWFKQXFH-QUqFZGyCMypqBNUSoDx2QMwGhhFKgROev7FQDQkolTMuKaGwrUjMn9vM2YovO1W1_7JTa1H5aEzuf6q867a2yXrvXYYJvPyUl06x4vDnNCPp6f3mevxeLtZT57XBSeS8gFah9dBRyDZE4LVsoQRcTKOGDgFA0aq2AUB6-djFqoKEMZhhdQRKBU8gm52Xs3qfvcYp_tqtumdjhpmeFgSlaCGKjbPeVT1_cJo92kunFpZynYnyxW2kOWgb06GLdVg-GP_O0wAHd7oPd1drnu2n9s33ezaWg</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Ben-Amotz, Dor</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4683-5401</orcidid></search><sort><creationdate>20240228</creationdate><title>Interfacial chemical reactivity enhancement</title><author>Ben-Amotz, Dor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e8cfab03ed52a84275df4feb9a020a61d8ebd9630c8a5f846f5d7dface4f01153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Aromaticity</topic><topic>Charge transfer</topic><topic>Chemical reactions</topic><topic>Droplets</topic><topic>Free energy</topic><topic>Micelles</topic><topic>Molecular structure</topic><topic>Reactivity</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Amotz, Dor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Amotz, Dor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial chemical reactivity enhancement</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>160</volume><issue>8</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38391019</pmid><doi>10.1063/5.0186945</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4683-5401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-02, Vol.160 (8)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_38391019
source AIP Journals Complete
subjects Adsorption
Aromaticity
Charge transfer
Chemical reactions
Droplets
Free energy
Micelles
Molecular structure
Reactivity
Surface chemistry
title Interfacial chemical reactivity enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20chemical%20reactivity%20enhancement&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ben-Amotz,%20Dor&rft.date=2024-02-28&rft.volume=160&rft.issue=8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0186945&rft_dat=%3Cproquest_pubme%3E2930972704%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930972704&rft_id=info:pmid/38391019&rfr_iscdi=true