Biomimetic delivery of emodin via macrophage membrane-coated UiO-66-NH 2 nanoparticles for acute pancreatitis treatment

Acute pancreatitis (AP) is a severe inflammatory condition with a rising incidence and high mortality rates, especially in severe cases. Emodin (ED), known for its potent anti-inflammatory properties, holds promise in addressing AP. However, its clinical application is hindered by limitations such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2024-04, Vol.702, p.149649
Hauptverfasser: Yang, Liuxuan, Liu, Xianbin, Yang, Jing, Wang, Ke, Ai, Zhenghao, Shang, Jinlu, Zhou, Meiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute pancreatitis (AP) is a severe inflammatory condition with a rising incidence and high mortality rates, especially in severe cases. Emodin (ED), known for its potent anti-inflammatory properties, holds promise in addressing AP. However, its clinical application is hindered by limitations such as low bioavailability and insufficient target specificity. Herein, we developed a novel drug delivery system using macrophage membrane-coated UiO-66-NH nanoparticles loaded with ED (MVs-UiO-ED). UiO-66-NH was successfully synthesized and characterized, revealing an octahedral structure with a suitable size distribution. The successful loading of ED onto UiO-66-NH was confirmed by ultraviolet and infrared spectroscopy. Subsequently, MVs-UiO-ED was prepared by coating macrophage membrane-derived vesicles onto UiO-ED, resulting in a biomimetic delivery system. In vitro release studies demonstrated that MVs-UiO-ED exhibited a sustained-release profile, indicating its potential for prolonged drug circulation. An AP mouse model was established to evaluate the therapeutic efficacy of MVs-UiO-ED. Compared with the model group, MVs-UiO-ED significantly reduced serum levels of α-amylase and lipase, two indicators of pancreatitis severity. Furthermore, histopathological examinations revealed that MVs-UiO-ED ameliorated pancreatic tissue damage. This study underscores the potential of MVs-UiO-ED as an effective therapeutic approach for AP.
ISSN:1090-2104