Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO 2 reduction
Electrochemical CO reduction (CO RR), fueled by clean and renewable energy, presents a promising method for utilizing CO effectively. The electrocatalytic reduction of CO to CO using a gas diffusion electrode (GDE) has shown great potential for industrial applications due to its high reaction rate a...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-02, p.170758 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical CO
reduction (CO
RR), fueled by clean and renewable energy, presents a promising method for utilizing CO
effectively. The electrocatalytic reduction of CO
to CO using a gas diffusion electrode (GDE) has shown great potential for industrial applications due to its high reaction rate and selectivity. However, guaranteeing its long-term stability still poses a significant challenge. In this study, we conducted a comprehensive investigation into various strategies to enhance the stability of the GDE. These strategies involved modifying the structure of the substrate, such as the gas diffusion layer (GDL) and the back side of the GDL (macroporous layer side). Additionally, we explored modifications to the catalyst layer (CL) and the front of the CL. To address these stability concerns, we proposed a practical approach that involved surface coating using carbon black in combination with in situ cyclic voltammetry (CV) cycles on Ag/Ag
/polytetrafluoroethylene (PTFE). The partial Faradaic efficiency exceeded 80 % within a span of 70 h. Electron microscopy and electrochemical characterization revealed that the implementation of in situ CV led to a reduction in catalyst particle size and the formation of a porous surface structure. By enhancing the stability of the GDE, this research opens up possibilities for the advancement of hybrid systems that focus on the production and utilization of syngas. |
---|---|
ISSN: | 1879-1026 |