Dynamic mode decomposition for Koopman spectral analysis of elementary cellular automata

We apply dynamic mode decomposition (DMD) to elementary cellular automata (ECA). Three types of DMD methods are considered, and the reproducibility of the system dynamics and Koopman eigenvalues from observed time series is investigated. While standard DMD fails to reproduce the system dynamics and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-01, Vol.34 (1)
Hauptverfasser: Taga, Keisuke, Kato, Yuzuru, Yamazaki, Yoshihiro, Kawahara, Yoshinobu, Nakao, Hiroya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply dynamic mode decomposition (DMD) to elementary cellular automata (ECA). Three types of DMD methods are considered, and the reproducibility of the system dynamics and Koopman eigenvalues from observed time series is investigated. While standard DMD fails to reproduce the system dynamics and Koopman eigenvalues associated with a given periodic orbit in some cases, Hankel DMD with delay-embedded time series improves reproducibility. However, Hankel DMD can still fail to reproduce all the Koopman eigenvalues in specific cases. We propose an extended DMD method for ECA that uses nonlinearly transformed time series with discretized Walsh functions and show that it can completely reproduce the dynamics and Koopman eigenvalues. Linear-algebraic backgrounds for the reproducibility of the system dynamics and Koopman eigenvalues are also discussed.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0159069