In-Vivo Electrical Properties Estimation of Biological Tissues by Means of a Multi-Step Microwave Tomography Approach

The accurate quantitative estimation of the electromagnetic properties of tissues can serve important diagnostic and therapeutic medical purposes. Quantitative microwave tomography is an imaging modality that can provide maps of the in-vivo electromagnetic properties of the imaged tissues, i.e. both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-05, Vol.43 (5), p.1983-1994
Hauptverfasser: Ambrosanio, Michele, Bevacqua, Martina Teresa, LoVetri, Joe, Pascazio, Vito, Isernia, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate quantitative estimation of the electromagnetic properties of tissues can serve important diagnostic and therapeutic medical purposes. Quantitative microwave tomography is an imaging modality that can provide maps of the in-vivo electromagnetic properties of the imaged tissues, i.e. both the permittivity and the electric conductivity. A multi-step microwave tomography approach is proposed for the accurate retrieval of such spatial maps of biological tissues. The underlying idea behind the new imaging approach is to progressively add details to the maps in a step-wise fashion starting from single-frequency qualitative reconstructions. Multi-frequency microwave data is utilized strategically in the final stage. The approach results in improved accuracy of the reconstructions compared to inversion of the data in a single step. As a case study, the proposed workflow was tested on an experimental microwave data set collected for the imaging of the human forearm. The human forearm is a good test case as it contains several soft tissues as well as bone, exhibiting a wide range of values for the electrical properties.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2024.3354463