Antimicrobial Cu-Doped TiO 2 Coatings on the β Ti-30Nb-5Mo Alloy by Micro-Arc Oxidation
Among the different surface modification techniques, micro-arc oxidation (MAO) is explored for its ability to enhance the surface properties of Ti alloys by creating a controlled and durable oxide layer. The incorporation of Cu ions during the MAO process introduces additional functionalities to the...
Gespeichert in:
Veröffentlicht in: | Materials 2023-12, Vol.17 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among the different surface modification techniques, micro-arc oxidation (MAO) is explored for its ability to enhance the surface properties of Ti alloys by creating a controlled and durable oxide layer. The incorporation of Cu ions during the MAO process introduces additional functionalities to the surface, offering improved corrosion resistance and antimicrobial activity. In this study, the β-metastable Ti-30Nb-5Mo alloy was oxidated through the MAO method to create a Cu-doped TiO
coating. The quantity of Cu ions in the electrolyte was changed (1.5, 2.5, and 3.5 mMol) to develop coatings with different Cu concentrations. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron and atomic force microscopies, contact angle, and Vickers microhardness techniques were applied to characterize the deposited coatings. Cu incorporation increased the antimicrobial activity of the coatings, inhibiting the growth of
,
,
bacteria strains, and
fungus by approximately 44%, 37%, 19%, and 41%, respectively. Meanwhile, the presence of Cu did not inhibit the growth of
. The hardness of all the deposited coatings was between 4 and 5 GPa. All the coatings were non-cytotoxic for adipose tissue-derived mesenchymal stem cells (AMSC), promoting approximately 90% of cell growth and not affecting the AMSC differentiation into the osteogenic lineage. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17010156 |