Photoelectrochemical sensor for the detection of Escherichia coli O157:H7 based on TPA-NO 2 and dual-functional polythiophene films

The detection of Escherichia coli (E. coli) is of great significance for the environment and human health. Herein, a photoelectrochemical (PEC) detection strategy based on molecularly imprinted polymers (MIPs) was proposed for the sensitive detection of E. coli. 4,4',4″-Trinitrotriphenylamine (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2024-05, Vol.441, p.138299
Hauptverfasser: Wang, Xiaoqing, Chen, Huiyi, Zhang, Jihui, Zhou, Hong, Meng, Xiangying, Wang, Na, Fang, Yishan, Cui, Bo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of Escherichia coli (E. coli) is of great significance for the environment and human health. Herein, a photoelectrochemical (PEC) detection strategy based on molecularly imprinted polymers (MIPs) was proposed for the sensitive detection of E. coli. 4,4',4″-Trinitrotriphenylamine (TPA-NO ) was prepared using a simple nitration reaction. Subsequently, MIP films were polymerized on the surface of TPA-NO using 1,3-dihydrothieno[3,2-d]pyrimidine-2,4-dione as the functional monomer with the dual functions of specific recognition and sensitization. The linear range was 10-10 CFU/mL and the limit of detection was 10 CFU/mL. It showed favorable recoveries in real sample tests of milk, orange juice and tomato. Additionally, the ability of functional monomers to bind excellently with E. coli was verified using molecular docking techniques. This research provided broader possibilities for constructing MIPs-PEC sensors and analyzing the interaction mechanism between E. coli and functional monomers.
ISSN:1873-7072
DOI:10.1016/j.foodchem.2023.138299