Knockdown of lncRNA PVT1 protects human trabecular meshwork cells against H 2 O 2 -induced injury via the regulation of the miR-29a-3p/VEGF/MMP-2 axis

Human trabecular meshwork cell (HTMC) dysfunction results in imbalanced aqueous humor inflow and outflow, leading to an increase in intraocular pressure (IOP). Uncontrolled high IOP can promote the occurrence of glaucoma, an irreversible optic neuropathy. Here, we explored whether the long non-codin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-01, Vol.10 (1), p.e23607
Hauptverfasser: Gong, Qiaoyun, Zhou, Danjing, Chen, Chong, Shen, Hangqi, Xu, Xun, Qian, Tianwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human trabecular meshwork cell (HTMC) dysfunction results in imbalanced aqueous humor inflow and outflow, leading to an increase in intraocular pressure (IOP). Uncontrolled high IOP can promote the occurrence of glaucoma, an irreversible optic neuropathy. Here, we explored whether the long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1)/microRNA-29a-3p (miR-29a-3p) axis could ameliorate HTMC dysfunction under oxidative stress by modulating the expression of the proangiogenic factor vascular endothelial growth factor (VEGFA) and the profibrotic factor metalloproteinase-2 (MMP-2). HTMCs were cultured under H O -induced oxidative stress for 48 h. The expression of lncRNA PVT1, miR-29a-3p, VEGFA, MMP-2, intracellular adhesion molecule-1 (ICAM-1), and alpha-smooth muscle actin (α-SMA) was detected by reverse transcription quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Interference experiments were conducted the transfection of HTMCs with small interfering RNA (siRNA) targeting lncRNA PVT1 or miR-29a-3p mimics. A luciferase reporter assay was undertaken to identify the presence of a miR-29a-3p binding site in lncRNA PVT1. Flow cytometry and Transwell and Cell Counting Kit-8 assays were employed to evaluate HTMC functions under oxidative stress with different treatments. In HTMCs, the expression of lncRNA PVT1 was induced by H O treatment, whereas that of miR-29a-3p was inhibited. The levels of angiogenic factors (VEGFA, ICAM-1) and fibrosis-associated mediators (MMP-2, α-SMA) were upregulated in HTMCs under oxidative stress. The siRNA-mediated suppression of lncRNA PVT1 or the upregulation of miR-29a-3p significantly suppressed the expression of VEGFA, MMP-2, ICAM-1, and α-SMA. A luciferase reporter assay confirmed that lncRNA PVT1 directly targeted miR-29a-3p and acted as a miR-29a-3p sponge. The knockdown of lncRNA PVT1 restored the level of miR-29a-3p in H O -treated HTMCs, thereby inhibiting VEGFA and MMP-2, its target mRNAs. HTMC dysfunction, including increased apoptosis and decreased cell mobility and viability, could be effectively ameliorated by lncRNA PVT1 downregulation or miR-29a-3p overexpression under oxidative stress. LncRNA PVT1 has potential as a therapeutic target for inhibiting VEGFA and MMP-2, thus protecting HTMCs, suppressing the progression of fibrosis, and, consequently, improving the outcome of glaucoma filtration surgery.
ISSN:2405-8440
2405-8440