Green to deep-red emissive carbon dot formation by C+ ion implantation on nitrogen beam created self-masked nano-template
We report the formation of green to red emissive arrays of carbon dot on silicon-nitride nano-templates by successive implantation of nitrogen and carbon broad ion beams. The patterned nano-templates are formed by 14 keV N ion-bombardment at grazing incident (70°) on Si. Subsequently, 5 keV C ions a...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2024-03, Vol.35 (12), p.125301 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the formation of green to red emissive arrays of carbon dot on silicon-nitride nano-templates by successive implantation of nitrogen and carbon broad ion beams. The patterned nano-templates are formed by 14 keV N
ion-bombardment at grazing incident (70°) on Si. Subsequently, 5 keV C
ions are implanted at the selective sites of the pyramidal nano-template by taking advantage of the self-masking effect. The nano-pyramidal pattern and the implanted carbon dots at the specific sites are confirmed by atomic force microscopy and cross sectional transmission electron microscopy measurements. The developed carbon dots (CDs) are mostly amorphous and consists of SiC and graphitic nitrogen (CN). G-band and D-band carbons are identified by Raman spectroscopy, while the presence of SiC and CN are detected by XPS measurements. A change of band-gap is observed for C-implanted templates by the UV-vis spectroscopy. Excitation wavelength-dependent photoemission from the dots is found in the green to red region. Maximum intense PL is observed in the green-orange region for excitation wavelength of 425 nm and a redshift of PL with decreasing intensity is observed with the increase of excitation wavelength. The observed photoluminescence is described in terms of the combined effects of quantum confinement, graphitic nitrogen and defect induced additional states formation in the carbon dots. The potential applications of CDs are also addressed. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ad14b1 |