Direct purification and immobilization of his-tagged enzymes using unmodified nickel ferrite NiFe 2 O 4 magnetic nanoparticles

Purification of valuable engineered proteins and enzymes can be laborious, costly, and generating large amount of chemical waste. Whilst enzyme immobilization can enhance recycling and reuse of enzymes, conventional methods for immobilizing engineered enzymes from purified samples are also inefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.21549
Hauptverfasser: Lau, Elizabeth C H T, Dodds, Kimberley C, McKenna, Catherine, Cowan, Rhona M, Ganin, Alexey Y, Campopiano, Dominic J, Yiu, Humphrey H P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purification of valuable engineered proteins and enzymes can be laborious, costly, and generating large amount of chemical waste. Whilst enzyme immobilization can enhance recycling and reuse of enzymes, conventional methods for immobilizing engineered enzymes from purified samples are also inefficient with multiple-step protocols, regarding both the carrier preparation and enzyme binding. Nickel ferrite magnetic nanoparticles (NiFe O MNPs) offer distinct advantages in both purification and immobilization of enzymes. In this work, we demonstrate the preparation of NiFe O MNPs via a one-step solvothermal synthesis and their use in direct enzyme binding from cell lysates. These NiFe O MNPs have showed an average diameter of 8.9 ± 1.7 nm from TEM analysis and a magnetization at saturation (M ) value of 53.0 emu g from SQUID measurement. The nickel binding sites of the MNP surface allow direct binding of three his-tagged enzymes, D-phenylglycine aminotransferase (D-PhgAT), Halomonas elongata ω-transaminase (HeωT), and glucose dehydrogenase from Bacillus subtilis (BsGDH). It was found that the enzymatic activities of all immobilized samples directly prepared from cell lysates were comparable to those prepared from the conventional immobilization method using purified enzymes. Remarkably, D-PhgAT supported on NiFe O MNPs also showed similar activity to the purified free enzyme. By comparing on both carrier preparation and enzyme immobilization protocols, use of NiFe O MNPs for direct enzyme immobilization from cell lysate can significantly reduce the number of steps, time, and use of chemicals. Therefore, NiFe O MNPs can offer considerable advantages for use in both enzyme immobilization and protein purification in pharmaceutical and other chemical industries.
ISSN:2045-2322
DOI:10.1038/s41598-023-48795-x