Strange attractors for the family of orientation preserving Lozi maps
We extend the result of Michał Misiurewicz assuring the existence of strange attractors for the parametrized family { f ( a , b ) } of orientation reversing Lozi maps to the orientation preserving case. That is, we rigorously determine an open subset of the parameter space for which an attractor A (...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-11, Vol.33 (11) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the result of Michał Misiurewicz assuring the existence of strange attractors for the parametrized family
{
f
(
a
,
b
)
} of orientation reversing Lozi maps to the orientation preserving case. That is, we rigorously determine an open subset of the parameter space for which an attractor
A
(
a
,
b
) of
f
(
a
,
b
) always exists and exhibits chaotic properties. Moreover, we prove that the attractor is maximal in some open parameter region and arises as the closure of the unstable manifold of a fixed point on which
f
(
a
,
b
)
|
A
(
a
,
b
) is mixing. We also show that
A
(
a
,
b
) vary continuously with parameter
(
a
,
b
) in the Hausdorff metric. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0139893 |