Studies of proline conformational dynamics in IDPs by 13 C-detected cross-correlated NMR relaxation

Intrinsically disordered proteins (IDPs) are significantly enriched in proline residues, which can populate specific local secondary structural elements called PPII helices, characterized by small packing densities. Proline is often thought to promote disorder, but it can participate in specific π·C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2023-09, Vol.354, p.107539
Hauptverfasser: Schiavina, Marco, Konrat, Ruth, Ceccolini, Irene, Mateos, Borja, Konrat, Robert, Felli, Isabella C, Pierattelli, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrinsically disordered proteins (IDPs) are significantly enriched in proline residues, which can populate specific local secondary structural elements called PPII helices, characterized by small packing densities. Proline is often thought to promote disorder, but it can participate in specific π·CH interactions with aromatic side chains resulting in reduced conformational flexibilities of the polypeptide. Differential local motional dynamics are relevant for the stabilization of preformed structural elements and can serve as nucleation sites for the establishment of long-range interactions. NMR experiments to probe the dynamics of proline ring systems would thus be highly desirable. Here we present a pulse scheme based on C detection to quantify dipole-dipole cross-correlated relaxation (CCR) rates at methylene CH groups in proline residues. Applying C-CON detection strategy provides exquisite spectral resolution allowing applications also to high molecular weight IDPs even in conditions approaching the physiological ones. The pulse scheme is illustrated with an application to the 220 amino acids long protein Osteopontin, an extracellular cytokine involved in inflammation and cancer progression, and a construct in which three proline-aromatic sequence patches have been mutated.
ISSN:1096-0856
DOI:10.1016/j.jmr.2023.107539