Association of exposure to polycyclic aromatic hydrocarbons with thyroid hormones in adolescents and adults, and the influence of the iodine status
Some studies of endocrine-disrupting polycyclic aromatic hydrocarbon (PAH) exposure and thyroid hormones (THs) are inconclusive. To assess the associations between PAHs and THs, and the influence of the iodine status on PAHs-THs, we employed 648 adolescents (12-19 years old) and 2691 adults from the...
Gespeichert in:
Veröffentlicht in: | Environmental science--processes & impacts 2023-09, Vol.25 (9), p.1449-1463 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some studies of endocrine-disrupting polycyclic aromatic hydrocarbon (PAH) exposure and thyroid hormones (THs) are inconclusive. To assess the associations between PAHs and THs, and the influence of the iodine status on PAHs-THs, we employed 648 adolescents (12-19 years old) and 2691 adults from the National Health and Nutrition Examination Survey 2007-2008 and 2011-2012. PAH metabolites [1-hydroxynaphthalene (1-NAP), 2-NAP, 1-hydroxyphenanthrene (1-PHE), 2-PHE, 3-PHE, 2-hydroxyfluorene (2-FLU), 3-FLU, 9-FLU, and 1-hydroxypyrene (1-PYR)], THs [total and free thyroxine (TT4 and FT4), total and free triiodothyronine (TT3 and FT3), thyroid stimulating hormone (TSH), and thyroglobulin (Tg)], peripheral deiodinase activity (
G
D
) and thyroid's secretory capacity (
G
T
) were involved. Multiple linear regression and weighted quantile sum (WQS) regression models were used to assess PAH-TH associations and the interaction between PAHs and the iodine status. Stratification analyses were conducted based on sex, smoking and iodine status. For adolescents, in a multivariable-adjusted regression model (
β
; 95% CI), 1-PHE (4.08%; 1.01%, and 7.25%), 2-PHE (3.98%; 0.70%, and 7.25%) and 9-FLU (3.77%; 1.10%, 7.47%) were positively correlated with TT3; 3-PHE and 1-PYR interacted with the iodine status (
P
-int < 0.05); 9-FLU was positively correlated with
G
D
in both sexes. Combined exposure to PAHs was positively associated with Tg (0.137; 0.030, and 0.243), and negatively correlated with TSH (−0.087; −0.166, and −0.008). For adults, 2-NAP was positively correlated with FT3 (0.90%; 0.20%, and 1.61%), FT4 (1.82%; 0.70%, and 2.94%), TT3 (1.31%; 0.10%, and 2.63%), TT4 (2.12%; 0.90%, and 3.36%) and
G
T
(2.22%; 1.01%, and 3.46%), but negatively correlated with TSH (−4.97%; −8.33%, and −1.49%); 1-NAP interacted with the iodine status (
P
-int < 0.05); 1-PHE was inversely correlated with TT3 in males; 2-PHE was positively correlated with TT3 in females. Combined exposure to PAHs was positively associated with FT3 (0.008; 0.001, and 0.014). Combined exposure to PAHs was positively associated with FT3, TT3 and
G
D
, and negatively correlated with FT4, TT4 and
G
T
in non-smoking adults; but positively associated with Tg (
β
= 0.140; 95% CI: 0.042, 0.237) in smoking adults. Our results indicated that combined and individual PAH exposure might be related to THs, and the iodine status had an influence on PAH-TH associations. These associations were not identical between adolescents an |
---|---|
ISSN: | 2050-7887 2050-7895 |
DOI: | 10.1039/d3em00135k |