Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting

Photoelectrochemical (PEC) water splitting for hydrogen evolution has been considered as a promising technology to solve the energy and environmental issues. However, the solar-to-hydrogen (STH) conversion efficiencies of current PEC systems are far from meeting the commercial demand (10%) due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2023-08, Vol.59 (67), p.144-166
Hauptverfasser: Wang, Xin, Ma, Siqing, Liu, Boyan, Wang, Songcan, Huang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoelectrochemical (PEC) water splitting for hydrogen evolution has been considered as a promising technology to solve the energy and environmental issues. However, the solar-to-hydrogen (STH) conversion efficiencies of current PEC systems are far from meeting the commercial demand (10%) due to the lack of efficient photoelectrode materials. The recent rapid development of defect engineering of photoelectrodes has significantly improved the PEC performance, which is expected to break through the bottleneck of low STH efficiency. In this review, the category and the construction methods of different defects in photoelectrode materials are summarized. Based on the in-depth summary and analysis of existing reports, the PEC performance enhancement mechanism of defect engineering is critically discussed in terms of light absorption, carrier separation and transport, and surface redox reactions. Finally, the application prospects and challenges of defect engineering for PEC water splitting are presented, and the future research directions in this field are also proposed. Photoelectrochemical (PEC) water splitting for hydrogen evolution has been considered as a promising technology to solve the energy and environmental issues.
ISSN:1359-7345
1364-548X
DOI:10.1039/d3cc02843g