Predicting particle deposition using a simplified 8-path in silico human lung prototype

Understanding particle deposition in the human lung is crucial for the assessment of environmental pollutants and the design of new drug delivery systems. Traditionally, research has been carried out by experimental analysis, but this generally requires expensive equipment and exposure of volunteers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of breath research 2023-10, Vol.17 (4), p.46002
Hauptverfasser: Barrio-Perotti, R, Martín-Fernández, N, Vigil-Díaz, C, Walters, K, Fernández-Tena, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding particle deposition in the human lung is crucial for the assessment of environmental pollutants and the design of new drug delivery systems. Traditionally, research has been carried out by experimental analysis, but this generally requires expensive equipment and exposure of volunteers to radiation, resulting in limited data. To overcome these drawbacks, there is an emphasis on the development of numerical models capable of accurate predictive analysis. The most advanced of these computer simulations are based on three-dimensional computational fluid dynamics. Solving the flow equations in a complete, fully resolved lung airway model is currently not feasible due to the computational resources required. In the present work, a simplified lung model is presented and validated for accurate prediction of particle deposition. Simulations are performed for an 8-path approximation to a full lung airway model. A novel boundary condition method is used to ensure accurate results in truncated flow branches. Simulations are performed at a steady inhalation flow rate of 18 l min , corresponding to a low activity breathing rate, while the effects of particle size and density are investigated. Comparison of the simulation results with available experimental data shows that reasonably accurate results can be obtained at a small fraction of the cost of a full airway model. The simulations clearly evaluate the effect of both particle size and particle density. Most importantly, the results show an improvement over a previously documented single-path model, both in terms of accuracy and the ability to obtain regional deposition rates. The present model represents an improvement over previously used simplified models, including single-path models. The multi-path reduced airway approach described can be used by researchers for general and patient-specific analyses of particle deposition and for the design of effective drug delivery systems.
ISSN:1752-7155
1752-7163
DOI:10.1088/1752-7163/ace6c7