Assessment of pulmonary fibrosis induced by paraquat using Al 18 F-NODA-FAPI-04 PET/CT
The lack of a highly sensitive method to evaluate paraquat (PQ)-induced pulmonary fibrosis and predict disease progression remains an unresolved clinic issue. Fibroblast activation protein (FAP) may play an important role in the pathogenesis of PQ-induced pulmonary fibrosis. We aimed to evaluate the...
Gespeichert in:
Veröffentlicht in: | Internal and emergency medicine 2023-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lack of a highly sensitive method to evaluate paraquat (PQ)-induced pulmonary fibrosis and predict disease progression remains an unresolved clinic issue. Fibroblast activation protein (FAP) may play an important role in the pathogenesis of PQ-induced pulmonary fibrosis. We aimed to evaluate the role of FAP in the PQ-induced pulmonary fibrosis and the utility of fibroblast activation protein inhibitor (FAPI) for positron emission tomography (PET) imaging in PQ-induced pulmonary fibrosis. In our study, two cases of PQ poisoning were presented and FAPI PET/CT was performed as a novel imaging technique. The uptake of FAPI increased in both cases of PQ poisoning. Animal experiments were then performed to validate the findings in the patients. Physiological FAPI lung uptake was higher in mice of the PQ group than in the control group. The results of histological analysis and Western blot were consistent with the findings of PET/CT imaging. The pulmonary fibrosis animal model was developed by intragastric gavage of PQ. PET/CT imaging was performed after injection of FAPI. Lung tissues of mice were collected for fibrosis assessment after imaging. Immunohistochemistry for FAP, histology and Western blot for collagen were performed to further validate the imaging findings. In conclusion, FAPI was involved in the pathogenesis of fibrosis induced by PQ, and PET/CT with FAPI could detect lung fibrogenesis, making it a promising tool to assess early disease activity and predict disease progression. |
---|---|
ISSN: | 1970-9366 |