Multiple Instance Differentiation Learning for Active Object Detection

Despite the substantial progress of active learning for image recognition, there lacks a systematic investigation of instance-level active learning for object detection. In this paper, we propose to unify instance uncertainty calculation with image uncertainty estimation for informative image select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-10, Vol.45 (10), p.12133-12147
Hauptverfasser: Wan, Fang, Ye, Qixiang, Yuan, Tianning, Xu, Songcen, Liu, Jianzhuang, Ji, Xiangyang, Huang, Qingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the substantial progress of active learning for image recognition, there lacks a systematic investigation of instance-level active learning for object detection. In this paper, we propose to unify instance uncertainty calculation with image uncertainty estimation for informative image selection, creating a multiple instance differentiation learning (MIDL) method for instance-level active learning. MIDL consists of a classifier prediction differentiation module and a multiple instance differentiation module. The former leverages two adversarial instance classifiers trained on the labeled and unlabeled sets to estimate instance uncertainty of the unlabeled set. The latter treats unlabeled images as instance bags and re-estimates image-instance uncertainty using the instance classification model in a multiple instance learning fashion. Through weighting the instance uncertainty using instance class probability and instance objectness probability under the total probability formula, MIDL unifies the image uncertainty with instance uncertainty in the Bayesian theory framework. Extensive experiments validate that MIDL sets a solid baseline for instance-level active learning. On commonly used object detection datasets, it outperforms other state-of-the-art methods by significant margins, particularly when the labeled sets are small.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2023.3277738