Trade-offs between number fluctuations and response in nonequilibrium chemical reaction networks

We study the response of chemical reaction networks driven far from equilibrium to logarithmic perturbations of reaction rates. The response of the mean number of a chemical species is observed to be quantitively limited by number fluctuations and the maximum thermodynamic driving force. We prove th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-05, Vol.158 (17)
Hauptverfasser: Chun, Hyun-Myung, Horowitz, Jordan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the response of chemical reaction networks driven far from equilibrium to logarithmic perturbations of reaction rates. The response of the mean number of a chemical species is observed to be quantitively limited by number fluctuations and the maximum thermodynamic driving force. We prove these trade-offs for linear chemical reaction networks and a class of nonlinear chemical reaction networks with a single chemical species. Numerical results for several model systems support the conclusion that these trade-offs continue to hold for a broad class of chemical reaction networks, though their precise form appears to sensitively depend on the deficiency of the network.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0148662