Synthesis of easily renewable and recoverable magnetic PEI-modified Fe 3 O 4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions
Tungsten is a hazardous metal to human health and the environment, but it is also valuable. Previous studies have been limited to the adsorption and removal of tungsten, without considering its recovery and utilization. In this article, a renewable magnetic material, Fe O nanoparticles coated by pol...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-08, Vol.330, p.121703 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tungsten is a hazardous metal to human health and the environment, but it is also valuable. Previous studies have been limited to the adsorption and removal of tungsten, without considering its recovery and utilization. In this article, a renewable magnetic material, Fe
O
nanoparticles coated by polyethyleneimine (Fe
O
@PEI NPs), is synthesized and used for the adsorption of tungsten in water. Tungsten adsorption experiments were conducted under different initial tungsten concentrations, contact times, solution pH values, and co-existing anions. The results show that Fe
O
@PEI NPs efficiently and rapidly adsorb tungsten from water, with a maximum adsorption capacity of 43.24 mg/g. Under acidic conditions (pH ∼2), the adsorption performance of the NPs maximized. This is because tungstate ions polymerize under such conditions to form polytungstic anions. These are attracted to the positively charged surface of Fe
O
@PEI NPs by electrostatic attraction, followed by complexation reactions with the surface hydroxyl and amino groups of NPs, as evidenced by multiple spectroscopic methods. The NPs can be recovered and renewed and provide a potential application for the enrichment and recycling of high-value tungsten (W(VI)). |
---|---|
ISSN: | 1873-6424 |