Handcuffed antisense oligonucleotides for light-controlled cell-free expression

Developing simple methods to silence antisense oligonucleotides (ASOs) using photocages opens up the possibility of precise regulation of biological systems. Here, we have developed a photocaging strategy based on 'handcuffing' two ASOs to a protein. Silencing was achieved by divalent bind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2023-05, Vol.59 (38), p.5685-5688
Hauptverfasser: Hartmann, Denis, Booth, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing simple methods to silence antisense oligonucleotides (ASOs) using photocages opens up the possibility of precise regulation of biological systems. Here, we have developed a photocaging strategy based on 'handcuffing' two ASOs to a protein. Silencing was achieved by divalent binding of two terminally photocleavable biotin-modified ASOs to a single streptavidin. These 'handcuffed' oligonucleotides showed a drastic reduction in gene knockdown activity in cell-free protein synthesis and were unlocked through illumination, regaining full activity. Topologically constraining antisense oligonucleotides (ASOs) into a handcuff structure, via photocages, silences their activity and opens up the possibility of precise light-controlled regulation of biological systems.
ISSN:1359-7345
1364-548X
DOI:10.1039/d3cc01374j