Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance
This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem....
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-06, Vol.35 (6), p.8026-8039 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8039 |
---|---|
container_issue | 6 |
container_start_page | 8026 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Zhang, Jin-Xi Yang, Tao Chai, Tianyou |
description | This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem. In the control design, a new type of performance function is constructed which provides a way to predefine the settling time and accuracy, straightforward. Then, a pair of barrier functions are employed to combat not only the position error but also the virtual control input. This evades the possible singularity or discontinuity of the control solution. Next, an initialization technique is exploited, removing the requirement for the initial condition of the control system. Finally, two NNs are employed to deal with the unknown ship nonlinearities. The performance analysis not only demonstrates the effectiveness of the proposed approach but also reveals its robustness against disturbances and unknown reference trajectory derivatives. There is, thus, no need to acquire such knowledge or employ specialized tools to handle disturbances. The theoretical findings are illustrated by a simulation study. |
doi_str_mv | 10.1109/TNNLS.2022.3223666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37015439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9996377</ieee_id><sourcerecordid>2796160871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a785243d7867ac77e9d2eb465caee2bf477ff422e32c64d81624bf6801a8bc393</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaEKaP9BCEeTSi11ppJVWx2DSpmCcQJyPm9BqR_U661Ui7VLy77OuHR86lxmY5x1m5iXkC2dTzpn5sVws5rdTYABTASCUUh_ICXAFExBl-fFQ68djcpbzmo2hWKGk-USOhWa8kMKckNUCh-RausD-b0xPdBa7PsWWxkDvuhqT8_3geqzp7ZCC80jvcdX4FjN9aPoVvUmYfWqqEVgmt0bfx_S6Lf1T0_2hN5hCTBvXefxMjoJrM57t8ym5-3m5nF1N5te_fs8u5hMvCt5PnC4LkKLWpdLOa42mBqykKrxDhCpIrUOQACjAK1mX45GyCqpk3JWVF0acku-7uc8pvgyYe7tpsse2dR3GIVvQRnHFSs1H9Pw_dB2H1I3bWcGU1LwAxkYKdpRPMeeEwT6nZuPSq-XMbq2w_6ywWyvs3opR9G0_eqg2WB8k748fga87oEHEQ9sYo4TW4g2_KY2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064715200</pqid></control><display><type>article</type><title>Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jin-Xi ; Yang, Tao ; Chai, Tianyou</creator><creatorcontrib>Zhang, Jin-Xi ; Yang, Tao ; Chai, Tianyou</creatorcontrib><description>This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem. In the control design, a new type of performance function is constructed which provides a way to predefine the settling time and accuracy, straightforward. Then, a pair of barrier functions are employed to combat not only the position error but also the virtual control input. This evades the possible singularity or discontinuity of the control solution. Next, an initialization technique is exploited, removing the requirement for the initial condition of the control system. Finally, two NNs are employed to deal with the unknown ship nonlinearities. The performance analysis not only demonstrates the effectiveness of the proposed approach but also reveals its robustness against disturbances and unknown reference trajectory derivatives. There is, thus, no need to acquire such knowledge or employ specialized tools to handle disturbances. The theoretical findings are illustrated by a simulation study.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3223666</identifier><identifier>PMID: 37015439</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Control systems ; Convergence ; Disturbances ; Network control ; Neural network (NN) control ; Neural networks ; Position errors ; predefined performance ; Sea surface ; Singularity (mathematics) ; Surface vehicles ; Surges ; Tracking control ; Trajectory ; Trajectory control ; Trajectory tracking ; Uncertainty ; underactuated surface vehicles (USVs)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-06, Vol.35 (6), p.8026-8039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a785243d7867ac77e9d2eb465caee2bf477ff422e32c64d81624bf6801a8bc393</citedby><cites>FETCH-LOGICAL-c351t-a785243d7867ac77e9d2eb465caee2bf477ff422e32c64d81624bf6801a8bc393</cites><orcidid>0000-0002-1451-7057 ; 0000-0003-4090-8497 ; 0000-0002-4623-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9996377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9996377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37015439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jin-Xi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><title>Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem. In the control design, a new type of performance function is constructed which provides a way to predefine the settling time and accuracy, straightforward. Then, a pair of barrier functions are employed to combat not only the position error but also the virtual control input. This evades the possible singularity or discontinuity of the control solution. Next, an initialization technique is exploited, removing the requirement for the initial condition of the control system. Finally, two NNs are employed to deal with the unknown ship nonlinearities. The performance analysis not only demonstrates the effectiveness of the proposed approach but also reveals its robustness against disturbances and unknown reference trajectory derivatives. There is, thus, no need to acquire such knowledge or employ specialized tools to handle disturbances. The theoretical findings are illustrated by a simulation study.</description><subject>Artificial neural networks</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Disturbances</subject><subject>Network control</subject><subject>Neural network (NN) control</subject><subject>Neural networks</subject><subject>Position errors</subject><subject>predefined performance</subject><subject>Sea surface</subject><subject>Singularity (mathematics)</subject><subject>Surface vehicles</subject><subject>Surges</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><subject>Uncertainty</subject><subject>underactuated surface vehicles (USVs)</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhkVpaEKaP9BCEeTSi11ppJVWx2DSpmCcQJyPm9BqR_U661Ui7VLy77OuHR86lxmY5x1m5iXkC2dTzpn5sVws5rdTYABTASCUUh_ICXAFExBl-fFQ68djcpbzmo2hWKGk-USOhWa8kMKckNUCh-RausD-b0xPdBa7PsWWxkDvuhqT8_3geqzp7ZCC80jvcdX4FjN9aPoVvUmYfWqqEVgmt0bfx_S6Lf1T0_2hN5hCTBvXefxMjoJrM57t8ym5-3m5nF1N5te_fs8u5hMvCt5PnC4LkKLWpdLOa42mBqykKrxDhCpIrUOQACjAK1mX45GyCqpk3JWVF0acku-7uc8pvgyYe7tpsse2dR3GIVvQRnHFSs1H9Pw_dB2H1I3bWcGU1LwAxkYKdpRPMeeEwT6nZuPSq-XMbq2w_6ywWyvs3opR9G0_eqg2WB8k748fga87oEHEQ9sYo4TW4g2_KY2I</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Jin-Xi</creator><creator>Yang, Tao</creator><creator>Chai, Tianyou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1451-7057</orcidid><orcidid>https://orcid.org/0000-0003-4090-8497</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid></search><sort><creationdate>20240601</creationdate><title>Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance</title><author>Zhang, Jin-Xi ; Yang, Tao ; Chai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a785243d7867ac77e9d2eb465caee2bf477ff422e32c64d81624bf6801a8bc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Disturbances</topic><topic>Network control</topic><topic>Neural network (NN) control</topic><topic>Neural networks</topic><topic>Position errors</topic><topic>predefined performance</topic><topic>Sea surface</topic><topic>Singularity (mathematics)</topic><topic>Surface vehicles</topic><topic>Surges</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><topic>Uncertainty</topic><topic>underactuated surface vehicles (USVs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jin-Xi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jin-Xi</au><au>Yang, Tao</au><au>Chai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>35</volume><issue>6</issue><spage>8026</spage><epage>8039</epage><pages>8026-8039</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem. In the control design, a new type of performance function is constructed which provides a way to predefine the settling time and accuracy, straightforward. Then, a pair of barrier functions are employed to combat not only the position error but also the virtual control input. This evades the possible singularity or discontinuity of the control solution. Next, an initialization technique is exploited, removing the requirement for the initial condition of the control system. Finally, two NNs are employed to deal with the unknown ship nonlinearities. The performance analysis not only demonstrates the effectiveness of the proposed approach but also reveals its robustness against disturbances and unknown reference trajectory derivatives. There is, thus, no need to acquire such knowledge or employ specialized tools to handle disturbances. The theoretical findings are illustrated by a simulation study.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37015439</pmid><doi>10.1109/TNNLS.2022.3223666</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1451-7057</orcidid><orcidid>https://orcid.org/0000-0003-4090-8497</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-06, Vol.35 (6), p.8026-8039 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_37015439 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Control systems Convergence Disturbances Network control Neural network (NN) control Neural networks Position errors predefined performance Sea surface Singularity (mathematics) Surface vehicles Surges Tracking control Trajectory Trajectory control Trajectory tracking Uncertainty underactuated surface vehicles (USVs) |
title | Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Control%20of%20Underactuated%20Surface%20Vehicles%20With%20Prescribed%20Trajectory%20Tracking%20Performance&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Jin-Xi&rft.date=2024-06-01&rft.volume=35&rft.issue=6&rft.spage=8026&rft.epage=8039&rft.pages=8026-8039&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3223666&rft_dat=%3Cproquest_RIE%3E2796160871%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064715200&rft_id=info:pmid/37015439&rft_ieee_id=9996377&rfr_iscdi=true |