Neural Network Control of Underactuated Surface Vehicles With Prescribed Trajectory Tracking Performance

This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-06, Vol.35 (6), p.8026-8039
Hauptverfasser: Zhang, Jin-Xi, Yang, Tao, Chai, Tianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is concerned with the fast and accurate trajectory tracking control problem for a sort of underactuated surface vehicle under model uncertainties and environmental disturbances. A novel neural networks (NNs)-based prescribed performance control strategy is proposed to solve the problem. In the control design, a new type of performance function is constructed which provides a way to predefine the settling time and accuracy, straightforward. Then, a pair of barrier functions are employed to combat not only the position error but also the virtual control input. This evades the possible singularity or discontinuity of the control solution. Next, an initialization technique is exploited, removing the requirement for the initial condition of the control system. Finally, two NNs are employed to deal with the unknown ship nonlinearities. The performance analysis not only demonstrates the effectiveness of the proposed approach but also reveals its robustness against disturbances and unknown reference trajectory derivatives. There is, thus, no need to acquire such knowledge or employ specialized tools to handle disturbances. The theoretical findings are illustrated by a simulation study.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2022.3223666