Carbon dot incorporated mesoporous silica nanoparticles for targeted cancer therapy and fluorescence imaging

A new and efficient theranostic nanoplatform was developed via a green approach for targeted cancer therapy and fluorescence imaging, without the use of any anticancer chemotherapeutic drugs. Toward this aim, monodisperse and spherical mesoporous silica nanoparticles (MSNs) of approximately 50 nm di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-03, Vol.13 (14), p.9491-95
Hauptverfasser: Kajani, Abolghasem Abbasi, Rafiee, Laleh, Javanmard, Shaghayegh Haghjooy, Dana, Nasim, Jandaghian, Setareh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new and efficient theranostic nanoplatform was developed via a green approach for targeted cancer therapy and fluorescence imaging, without the use of any anticancer chemotherapeutic drugs. Toward this aim, monodisperse and spherical mesoporous silica nanoparticles (MSNs) of approximately 50 nm diameter were first synthesized using the sol-gel method and loaded with hydrothermally synthesized anticancer carbon dots (CDs). The resulting MSNs-CDs were then functionalized with chitosan and targeted by an anti-MUC1 aptamer, using the glutaraldehyde cross-linker, and fully characterized by TEM, FE-SEM, EDS, FTIR, TGA, XRD, and BET analysis. Potent and selective anticancer activity was obtained against MCF-7 and MDA-MB-231 cancer cells with the maximum cell mortalities of 66.2 ± 1.97 and 71.8 ± 3%, respectively, after 48 h exposure with 100 μg mL −1 of the functionalized MSNs-CDs. The maximum mortality of 40.66 ± 1.3% of normal HUVEC cells was obtained under the same conditions. Based on the results of flowcytometry analysis, the apoptotic mediated cell death was recognized as the main anticancer mechanism of the MSNs-CDs. The fluorescence imaging of MCF-7 cancer cells was also studied after exposure with MSNs-CDs. The overall results indicated the high potential of the developed nanoplatform for targeted cancer theranostics. Efficient cancer therapy and fluorescence imaging was obtained by aptamer targeted mesoporous silica nanoparticles incorporating carbon dots.
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra00768e