Cd 3 (C 3 N 3 S 3 ) 2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H 2 O 2 production under visible light

For a long time, there has been global concern over the environment and energy problems. Recently, the problems, which have brought about serious effect on the global living condition, have been in the "spotlight" and given impetus to the universal's efforts to head for the same direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science bulletin 2017-05, Vol.62 (9), p.610
Hauptverfasser: Xu, Jie, Chen, Zhenye, Zhang, Hongwen, Lin, Guibin, Lin, Huaxiang, Wang, Xuxu, Long, Jinlin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a long time, there has been global concern over the environment and energy problems. Recently, the problems, which have brought about serious effect on the global living condition, have been in the "spotlight" and given impetus to the universal's efforts to head for the same direction: stem the worst warming and strive for the renewable energy source. Hydrogen peroxide (H O ) is undoubtedly a good choice, which holds the promise as a clean, efficient, safe and transferrable energy carrier. Octahedral coordination polymer, Cd (C N S ) , was found to be a robust photocatalyst for H O generation under visible light irradiation. To further improve the H O generation efficiency, adhering the octahedron to reduced graphene (rGO) was applied as the strategy herein. The study shows that by adhering Cd (C N S ) to rGO, the formation of H O is 2.5-fold enhanced and its deformation is concurrently suppressed. This work not only demonstrates the effectiveness of adhering Cd (C N S ) polymer to rGO for the improvement of the polymer's photocatalytic performance, but also proposes a general way for the fabrication of graphene/coordination compound hybrids for maximizing their synergy.
ISSN:2095-9281
DOI:10.1016/j.scib.2017.04.013