Energy-adaptive resistive switching with controllable thresholds in insulator-metal transition

Resistive switching has provided a significant avenue for electronic neural networks and neuromorphic systems. Inspired by the active regulation of neurotransmitter secretion, realizing electronic elements with self-adaptive characteristics is vital for matching Joule heating or sophisticated therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-12, Vol.12 (55), p.35579-35586
Hauptverfasser: Huang, Tiantian, Zhang, Rui, Zhang, Lepeng, Xu, Peiran, Shao, Yunkai, Yang, Wanli, Chen, Zhimin, Chen, Xin, Dai, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistive switching has provided a significant avenue for electronic neural networks and neuromorphic systems. Inspired by the active regulation of neurotransmitter secretion, realizing electronic elements with self-adaptive characteristics is vital for matching Joule heating or sophisticated thermal environments in energy-efficient integrated circuits. Here we present energy-adaptive resistive switching via a controllable insulator-metal transition. Memory-related switching is designed and implemented by manipulating conductance transitions in vanadium dioxide. The switching power decreases dynamically by about 58% during the heating process. Furthermore, the thresholds can be controlled by adjusting the insulator-metal transition processes in such nanowire-based resistive switching, and then preformed in a wide range of operating temperatures. We believe that such power-adaptive switching is of benefit for intelligent memory devices and neuromorphic electronics with low energy consumption. Adaptive energy-scaling resistive switching with active response and self-regulation via controllable insulator-metal transition shows promise in energy-efficient devices.
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra06866d