CO 2 as an Alternative to Traditional Antiscalants in Pressure-Driven Membrane Processes: An Experimental Study of Lab-Scale Operation and Cleaning Strategies

Scaling, or inorganic fouling, is a major factor limiting the performance of membrane-based water treatment processes in long-term operation. Over the past few decades, extensive studies have been conducted to control the scale growth found in membrane processes and to develop sustainable and greene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2022-09, Vol.12 (10)
Hauptverfasser: Shahid, Muhammad Kashif, Choi, Younggyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scaling, or inorganic fouling, is a major factor limiting the performance of membrane-based water treatment processes in long-term operation. Over the past few decades, extensive studies have been conducted to control the scale growth found in membrane processes and to develop sustainable and greener processes. This study details the role of CO2 in scale inhibition in membrane processes. The core concept of CO2 utilization is to reduce the influent pH and to minimize the risk of scale formation from magnesium or calcium salts. Three reverse osmosis (RO) units were operated with a control (U1), CO2 (U2), and a commercial antiscalant, MDC-220 (U3). The performances of all the units were compared in terms of change in transmembrane pressure (TMP). The overall efficiency trend was found as U1 > U3 > U2. The membrane surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for the morphological and elemental compositions, respectively. The surface analysis signified a significant increase in surface smoothness after scale deposition. The noticeable reduction in surface roughness can be described as a result of ionic deposition in the valley region. A sludge-like scale layer was found on the surface of the control membrane (U1) which could not be removed, even after an hour of chemical cleaning. After 20−30 min of cleaning, the U2 membrane was successfully restored to its original state. In brief, this study highlights the sustainable membrane process developed via CO2 utilization for scale inhibition, and the appropriate cleaning approaches.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12100918